
1 | P a g e

Model Driven Network

Automation with IOS-XE
LTRCRT-2700

Speakers: Tony Roman – Content Engineer

2 | P a g e

Table	of	Contents	
LAB 1: Exploring RESTCONF on IOS-EX with Postman .. 3

Introduction .. 3

Task 1: Getting Familiar with Postman .. 3

Task 2: Retrieving Device Configurations .. 5

Task 3: Making a Configuration Change .. 12

Lab 2: Automating IOS-XE with RESTCONF while using Python requests ... 19

Task 1: Getting Familiar with Python Requests ... 19

Task 2: Making a GET request with Python ... 22

Task 3: Retrieve Interface Configurations .. 24

Task 4: Get Dynamic Routing Configuration .. 27

Challenge 1: Update Interface GigabitEthernet2 ... 30

Challenge 1: Solution ... 33

Challenge 2: Create a Loopback Interface .. 34

Challenge 2: Solution ... 36

Lab 3: Automating IOS-XE with NETCONF using Python ncclient ... 37

Task 1: Getting Familiar with Python ncclient ... 37

Task 2: Retrieving the Running Configuration ... 41

Task 3 - Retrieving Interfaces .. 42

Task 4 - Configuring an Interface (Default operation is merge) ... 44

Task 5 - Configuring an Interface using Replace Operation.. 46

Task 6 - Retrieving all dynamic routing configuration.. 48

Challenge 3: Replace the Complete routing configuration... 49

Challenge 3: Solution ... 51

3 | P a g e

LAB 1: Exploring RESTCONF on IOS-EX with
Postman

Introduction	
In this lab, you will get familiar with a popular REST Client called Postman. Postman is a Chrome application that
makes it extremely easy and intuitive for exploring, testing, and prototyping HTTP-Based APIs.

Using Postman, you’re able to explore APIs, get to understand and test them before writing any code speeding
up the overall development process.

Task	1:	Getting	Familiar	with	Postman	

In this first task, we’re going to go over the basics of working with Postman and HTTP-Based APIs. First off, you
should know you need to be aware of a few things when making RESTful HTTP-Based API calls. For example, you
need to know:

The URL of the API resource in question – in networking, this usually maps back to a given feature, statistics,
configuration, or operational state data.

The HTTP method (verb) required – common ones are GET, PUT, POST, PATCH, and DELETE.

Headers – used to define attributes such as encoding types, i.e. do you want to use XML or JSON to
communicate to the server (network device)—remember the network device is now in essence running a web
server)? The most common headers we use in the labs are Content-Type and Accept. Accept tells the target
device how you want to receive data and Content-Type is how you are sending data. Note: you send data when
you are making a configuration change, but do not when retrieving data.

Credentials – of course, you need some level of security or credentials. For IOS-XE, you require level 15
credentials to use the API.

That’s enough for now—let’s get started.

Step 1

Connect to your assigned lab pod and open the Student Workstation. The Student Workstation is a pre-built
Ubuntu Linux instance that has utilities like Postman pre-installed. Once you have accessed the Student
Workstation desktop, open Postman by clicking the icon located on the desktop.

 	

4 | P a g e

Step 2

Once you have opened Postman, you’ll see a screen similar to the following one:

Let’s take a minute to review all the numbers in the picture. Each number identifies a key area of Postman
that’s used to make API calls. Here is a breakdown of what each number is:

1. History – every API call you make is saved in History. Since Postman is a Chrome application, History is
shared between Postman (Chrome) sessions if you’re logged in different PCs.

2. Collections – you can create a collection of items from your History. This makes it possible to build out
robust workflows and save them as a collection before you start development / coding.

3. HTTP Verb / Method – drop down for you to select the method required for the API: GET, POST, PATCH,
PUT, DELETE, etc.

4. URL – this is where you enter the URL of your API endpoint.

5. Authorization – your level 15 credentials will go here for IOS-XE (we’ll be using Basic Authentication).

6. Headers – you will configure two headers here, Content-Type and Accept that’ll get sent in the HTTP
Header as part of the request.

Finally, the Send button that issues the API call to the device (API endpoint)

 	

5 | P a g e

Task	2:	Retrieving	Device	Configurations	

Step 1

It’s time to start issuing API calls to the Cisco IOS-XE CSR1000V.

Note: This device is running IOS XE 16.11.1b

The first API call you’ll issue will retrieve a complete device running configuration as JSON as compared to a
“show run” that is raw text and has no structure to it at all.

Enter in the following URL: https://csr1kv/restconf/data/Cisco-IOS-XE-native:native

Ensure the HTTP method is GET

Configure your credentials (cisco/cisco) in the Authorization tab

Here we are getting back the “running” configuration as denoted in the URL that adheres to the Cisco “native”
YANG model.

 	

6 | P a g e

Step 2

Navigate to the Headers tab and enter the two headers we mentioned earlier and set them to their proper
values:

Accept: application/yang-data+json

Content-Type: application/yang-data+json

These two headers are specific to RESTCONF, but it basically means we want to use JSON. You can also change
JSON to XML and see how the data differs.

7 | P a g e

Step 3

At this point, we’re ready to click Send.

Once you click Send, you’ll see the following response:

Take several minutes to explore the data that was returned. The data returned is a JSON structured response
and you can see how the keys and values do indeed map back to more familiar CLI commands.

 	

8 | P a g e

Step 4

By default, the whole data set is returned with the previous API call. However, RESTCONF supports a query
string “?depth=” that you can add to GET API calls to limit the depth of the set of data returned. Re-run the
previous API but append “?depth=1” to the URL.

Enter in the following URL: https://csr1kv/restconf/data/Cisco-IOS-XE-native:native?depth=1

Click the Send Button and execute the API call. Below is a portion of what you’ll see:

Did you notice how much the data was returned was limited? Feel free to issue both of these API calls again to
compare and contrast them.

9 | P a g e

Step 5

Make two more API calls to retrieve the version of software and hostname of the device.

Because the hierarchy is very well defined (from the original YANG model), it makes the API very flexible. You
simply add the key/values you want to the URL on GET requests.

• Retrieve the OS Version

URL: https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/version

• Retrieve the Device Hostname

URL: https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/hostname

Both version and hostname are “root” keys in the response from the previous API calls. See how the URLs map
to tree hierarchy of data.

Go ahead and attempt to get those values using Postman.

Step 6

Let’s look at another example.

The picture below shows the license, which is also a “root” key. Issue an API call to return just the “udi”
information.

URL: https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/license/udi

Notice how much smaller the return data is and that it’s inversely proportional to the size of the URL, all based
on the key-value pairs you’re search for and entering in the URL.

10 | P a g e

Step 7

Issue an API call to see all configured interfaces on the system.

Method: GET

URL: https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface

You can see that a list objects (array) is returned that uses right angle square brackets. When this happens, you
use the name key’s value in the URL to drill down to that given element in the list. For example, the next Step
drills down into GigabitEthernet2.

Step 8

Remove ANY secondary addresses on GigabitEthernet2.

SSH into the router using the Linux terminal command:

ssh cisco@csr1kv

Configure the router:

csr1kv(config)#int gi2
csr1kv(config-if)#no ip address 10.5.1.9 255.255.255.0 secondary
csr1kv(config-if)#no ip address 10.55.1.9 255.255.255.0 secondary
csr1kv(config-if)#end
csr1kv#

YOU MUST TYPE “end” to leave configuration mode!!! If you do not you will not
see the changes in Postman.

 	

11 | P a g e

Step 9

Update the URL to just query GigabitEthernet2

URL: https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface/GigabitEthernet=2

Click Send

You’ll see the following response:

Copy and paste the JSON response to your clipboard. Simply select it, right click, and click copy. We are going
to use this data in the next task.

12 | P a g e

Task	3:	Making	a	Configuration	Change	

Step 1

Change the HTTP method to PATCH.

URL: https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface/GigabitEthernet

Copy and paste the JSON response in the Body tab (next to Headers) as shown in the picture below, select raw
as the Body Type:

Remove the “=2” from the end of the URL as shown here and, in the picture, below:

Click Send

At this point you’re pushing the same exact configuration the device already has to ensure we have the format
of our JSON Body correct.

You should have received a HTTP 200 level message saying this was successful. More specifically you will receive
a HTTP 204 meaning no content returned and request successfully processed.

13 | P a g e

Step 2

Updating the configuration for GigabitEthernet3

Change the “name” value from “2” to “3” for the name key in the JSON Body.

Update the IP address and mask to: 172.21.33.99 and 255.255.255.0

Click Send

 	

14 | P a g e

Step 3

Verify the changes on GigabitEthernet3 using Postman using a GET request.

15 | P a g e

Step 4

Manually SSH from the Linux terminal into the router using the following command:

ssh cisco@csr1kv

Enter the following commands to add two secondary addresses to GigabitEthernet3:

csr1kv#config t
csr1kv (config)#int GigabitEthernet 3
csr1kv (config-if)#ip address 10.1.81.3 255.255.255.0 secondary
csr1kv (config-if)#ip address 10.81.81.3 255.255.255.0 secondary
csr1kv (config-if)#end
csr1kv#
csr1kv# ! REMEMBER YOU MUST ENTER “END”

16 | P a g e

Step 5

Verify the changes on GigabitEthernet3 using Postman using a GET request. This should be in your History by
now so you can easily re-execute it.

Ensure you see both secondary addresses as well.

17 | P a g e

Step 6

Now we’re going to show the power of using PUT vs. PATCH.

From your History on the left, choose the PATCH that configured 172.21.33.99/24 on GigabitEthernet3 and
validate the JSON Body does not have any secondary addresses.

Add “=3” back into the end of the URL.

This is required for PUTs because we’ll be replacing a full element and its children in the configuration hierarchy.

Verify your URL and Body looks like the following:

Click Send.

18 | P a g e

Step 7

Perform one more GET or manually SSH to the router to verify the final configuration on GigabitEthernet3. You
will have the following configuration:

interface GigabitEthernet3
 ip address 172.21.33.99 255.255.255.0
 speed 1000
 no negotiation auto
 no mop sysid
end

As you get started using the RESTCONF API, realize there is GREAT POWER using PUTs over PATCHes. PUT
literally replaces whatever you are sending in the JSON body in the configuration. You are effectively saying
“this is the configuration you want on the device” without regard for the current configuration which is very
much in-line with Cisco’s strategy for intent-based networking.

Take a few more minutes and continue exploring the RESTCONF API on IOS-XE.

19 | P a g e

Lab 2: Automating IOS-XE with RESTCONF
while using Python requests

In this lab, you will use the Python requests library to automate collecting data as well as configuring IOS-XE
using the RESTCONF API.

Task	1:	Getting	Familiar	with	Python	Requests	
	
In the previous lab, you learned how to use Postman and make HTTP-Based API calls. You'll now see how that
maps directly to using a Python library called requests that simplifies working with HTTP-APIs (both RESTful and
non-RESTful HTTP APIs). In this first task, you'll prepare basic Python variables and objects that'll be used
through this lab.

Step 1

Open a Linux terminal and then enter the Python Interactive Shell (often referred to use the Python shell) by
typing the Linux statement python.

cisco@student-workstation:~$ python
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Once you see the three greater than signs (>>>), this means you're at the Python shell and you can start typing
in Python statements. This is a great way to practice Python or making API calls!

Step 2

Import the required libraries that we need for this lab. This includes requests and a helper function
within requests called HTTPBasicAuth.

>>> import requests
>>> from requests.auth import HTTPBasicAuth
>>>

At this time, we have the required helper functions to make HTTP API calls. This is what requests does. You'll
see this even more in the next few minutes.

 	

20 | P a g e

Step 3

Create three variables called AUTH, MEDIA_TYPE, and HEADERS. The data assigned to these three variables will
be sent in each HTTP request we make from Python to the IOS-XE CSR1000V router.

>>> AUTH = HTTPBasicAuth('cisco', 'cisco')
>>> MEDIA_TYPE = 'application/yang-data+json'
>>> HEADERS = { 'Accept': MEDIA_TYPE, 'Content-Type': MEDIA_TYPE }
>>>

Here is a description of each of these three variables:

AUTH - this is using the helper function called HTTPBasicAuth to simplify authenticating to the device using
standard level 15 credentials.

MEDIA_TYPE - this variable is going to be used to defined the media-type each header will use. In other words,
it tells the router how we're going to send data to it. Because we're sending JSON data modelled from YANG and
using the RESTCONF API, this will mostly be set to "application/vnd.yang.data+json".

HEADERS - We're defining two HTTP headers that will be sent to the router in each
session, Accept and Content-Type. Accept is telling the router how to respond and Content-Type is
telling the router the format of the data we are sending.

 	

21 | P a g e

Step 4

We're going to be sending A LOT of GET requests to the CSR1000V, so let's create a function to help us.
Functions are used to minimize the amount of duplicate code, so rather than have print statements and API call
per URL, you're going to put these statements into a Python function.

>>> def get_request(url):
... response = requests.get(url, auth=AUTH, headers=HEADERS, verify=False)
... print("API: ", url)
... print(response.status_code)
... if response.status_code in [200, 202, 204]:
... print("Successful")
... else:
... print("Error in API Request")
... print(response.text)
... print("=" * 40)
... print("=" * 40)
...
>>> # MAKE SURE TO HIT ENTER TWICE AFTER TYPING IN THE LAST LINE
>>> # 4 SPACE INDENT IS COMMON, BUT AS LONG AS YOUR CONSISTENT, YOU'LL BE OKAY!

Note: for convenience and to reduce typos the previous text can be copied from
~/Desktop/CopyPaste/Lab2-Task1-Step4.txt

We need to pass one object to the function each time, namely a URL. Once the function get_request receives
the URL, it'll execute the API call as a GET request. You see the line requests.get(...) which maps directly
to the HTTP verb being used. If you wanted to do a HTTP POST, you would do requests.post(...).

There are also two attributes of the response we're going to use and print out:

status_code - this contains the HTTP response code. Valid responses from IOS-XE are 200, 202, and 204.

text - this attribute contains the response from the router as a string

Take notice a conditional statement that checks the status and prints a successful or error message based on the
API call.

At this point, we're ready to start making API calls. The foundation is in place-- all we need

to do now is pass URLs to the get_request function to start issuing HTTP GET requests.

22 | P a g e

Task	2:	Making	a	GET	request	with	Python	

In the first API call, you're going to start with the same exact API call you made in Postman that retrieves the
device's configuration.

Step 1

Create a variable called url and assign it the value of "http://csr1kv/restconf/api/running/native"

>>> url = "https://csr1kv/restconf/data/Cisco-IOS-XE-native:native"
>>>

Step 2

Pass url to the get_request function. Remember, the get_request function will automatically print the
response.

>>> get_request(url)

Once entered, you'll see the following full response:

>>> get_request(url)
API: https://csr1kv/restconf/data/Cisco-IOS-XE-native:native
200
Successful
<output-omitted>
==
==
>>>

 	

23 | P a g e

Step 3

Remember, you can always add ?depth=1 to the URL to retrieve less information about particular elements in
the response.

Create a new variable called url with the query parameter and call the get_request function again.

>>> url = "https://csr1kv/restconf/data/Cisco-IOS-XE-native:native?depth=1"
>>> get_request(url)
API: http://csr1kv/restconf/api/running/native?deep
200
Successful
<output-omitted>
==
==
>>>

Again, we're suppressing the output as you just saw many of these using Postman. The point is to get familiar
with performing the same tasks using Python.

 	

24 | P a g e

Task	3:	Retrieve	Interface	Configurations	

In this task, you're going to make a series of API calls that retrieve interface configuration data. You'll make API
calls that retrieve all interfaces, just one interface, and then continue to drill down into very specific data about
a given interface.

Issue API calls to the following URLs using the get_request function (we'll walk through in each step below):

• https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface
• https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface/GigabitEthernet=2
• https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface/GigabitEthernet=2/ip/
• https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface/GigabitEthernet=1/ip/address/
• https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface/GigabitEthernet=1/ip/address/primary
• https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface/GigabitEthernet=1/ip/address/primary/address

Step 1

Retrieve back configurations for all interfaces configured:

>>> url = "https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface"
>>> get_request(url)
API: https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface

200
Successful
<output-omitted>
==
==
>>>

25 | P a g e

Step 2

Narrow down the response to just a single interface:

>>> url = "https://csr1kv/restconf/data/Cisco-IOS-XE-
native:native/interface/GigabitEthernet=2"
>>> get_request(url)
API: https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface/GigabitEthernet=2
200
Successful
<output-omitted>
==
==
>>>

Step 3

Retrieve just the Layer 3 IP configuration for an interface:

>>> url = "https://csr1kv/restconf/data/Cisco-IOS-XE-
native:native/interface/GigabitEthernet=2/ip/"
>>> get_request(url)
API: https://csr1kv/restconf/data/Cisco-IOS-XE-
native:native/interface/GigabitEthernet=2/ip/
200
Successful
<output-omitted>
==
==
>>>

Step 4

Narrow the request down even more to just receive the IPv4 address and mask of the interface including any
secondary interfaces configured on the interface:

>>> url = "https://csr1kv/restconf/data/Cisco-IOS-XE-
native:native/interface/GigabitEthernet=1/ip/address/"
>>> get_request(url)
API: https://csr1kv/restconf/data/Cisco-IOS-XE-
native:native/interface/GigabitEthernet=1/ip/address/
200
Successful
<output-omitted>
==
==
>>>

26 | P a g e

Step 5

You can continue to narrow down, or filter, the response.

This time, just retrieve the primary IPv4 address and mask.

>>> url = "https://csr1kv/restconf/data/Cisco-IOS-XE-
native:native/interface/GigabitEthernet=1/ip/address/primary"
>>> get_request(url)
API: https://csr1kv/restconf/data/Cisco-IOS-XE-
native:native/interface/GigabitEthernet=1/ip/address/primary
200
Successful
<output-omitted>
==
==
>>>

Step 6

Finally, make an API call to return just the primary IPv4 address (excluding the mask):

>>> url = "https://csr1kv/restconf/data/Cisco-IOS-XE-
native:native/interface/GigabitEthernet=1/ip/address/primary/address"

>>> get_request(url)
API: https://csr1kv/restconf/data/Cisco-IOS-XE-
native:native/interface/GigabitEthernet=1/ip/address/primary/address
200
Successful
<output-omitted>
==
==
>>>

You should notice how easy it is to crawl the response (tree) from a device after seeing the key-value pairs
returned from the device.

This is made possible because RESTCONF (and NETCONF) are both modelled driven APIs on IOS-XE.

27 | P a g e

Task	4:	Get	Dynamic	Routing	Configuration	

In this task, you're going to migrate away from using the Python interactive shell and start to use standalone
Python scripts to perform similar tasks. Rather than look at interface configurations, you'll extract configuration
data for routing protocols.

Step 1

Exit the Python Interactive Shell

>>> exit()
cisco@student-workstation:~$

Step 2

Open a text editor of your choice on the Student Workstation. There are several included and pre-installed for
use. For example, you can use Atom or Notepadqq or nano or vim.

If you're not familiar with any of these, you can use nano. It offers fairly intuitive editing functionality.

While still on the Linux shell, enter the statement nano:

cisco@student-workstation:~$ nano

You can use the menu options on the bottom after nano editor opens for editing and performing operations in
the file.

28 | P a g e

Step 3

Enter the following Python statements into nano (or the text editor of your choice).

These statements are no different than the ones you typed when you first entered the Python shell.

import requests
from requests.auth import HTTPBasicAuth

Disable SSL Verification Warning because of Private SSL Certificate
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

AUTH = HTTPBasicAuth('cisco', 'cisco')
MEDIA_TYPE = 'application/yang-data+json'
HEADERS = { 'Accept': MEDIA_TYPE, 'Content-Type': MEDIA_TYPE }

def get_request(url):
 response = requests.get(url, auth=AUTH, headers=HEADERS, verify=False)
 print("API: ", url)
 print(response.status_code)
 if response.status_code in [200, 202, 204]:
 print("Successful")
 else:
 print("Error in API Request")
 print(response.text)
 print("=" * 40)
 print("=" * 40)

Note: for convenience and to reduce typos the previous text can be copied from
~/Desktop/CopyPaste/Lab2-Task4-Step3.txt

Step 4	

Before moving forward, let's ensure you don't have any spacing issues. Save and Exit the file by typing
CONTROL+X (if using nano). You will be prompted to save when you try and exit.

Save the file as cl-restconf.py.

29 | P a g e

Step 5

Execute the Python script from the Linux shell.

cisco@student-workstation:~$ python cl-restconf.py
cisco@student-workstation:~$

If you don't see anything, it means your spacing (and indentation) is good. You have no syntax
issues.

Open the file back up using the following command:

cisco@student-workstation:~$ nano cl-restconf.py

Step 6

Enter the following statements in your new script. They will be used to retrieve OSPF and BGP configuration
information.

You should enter one url and one function call, save the file, exit your text editor, then execute the script for
each API call ONE API AT A TIME.

url = "https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/router/"
get_request(url)

url = "https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/router/bgp=65512"
get_request(url)

url = "https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/router/bgp=65512/bgp/router-
id"
get_request(url)

url = "https://crsk1v/restconf/data/Cisco-IOS-XE-native:native/router/ospf=100/router-id"
get_request(url)

If you receive any errors, please read them carefully and remember, you can test them in Postman too, if
needed.

30 | P a g e

Challenge 1: Update Interface
GigabitEthernet2

In this challenge, you will update the IP address for GigabitEthernet2 to 172.16.31.202/24.

1. Create a new Python Script called update-interface.py

2. There is no need to copy over the existing get_request function for the example (unless you want to, of
course)

3. You do need to copy or enter the following into the new script:

import requests
from requests.auth import HTTPBasicAuth

Disable SSL Verification Warning because of Private SSL Certificate
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

AUTH = HTTPBasicAuth('cisco', 'cisco')
MEDIA_TYPE = 'application/yang-data+json'
HEADERS = { 'Accept': MEDIA_TYPE, 'Content-Type': MEDIA_TYPE }

4. Use the URL you used to retrieve the configuration for GigabitEthernet2

5. Since you're making a change, you NEED to pass data in the HTTP Body

6. A great way to see what data needs to be sent is to issue a GET request first to see how you want to
structure the data

7. Remember, that it's always requests.<verb> - use the verb that is merges or appends configuration, but
does not REPLACE/CREATE configuration.

8. You will need a statement like this:

response = requests.<verb>(url, headers=HEADERS, auth=AUTH, data=payload, verify=False)

31 | P a g e

The data key is used when you are making a configuration change. payload is a variable that you must
define. In your case, you should make payload a multi-line string that denotes the object you want to send to
the device (just like you did in Postman).

Note: to create a multi-line string in Python, you use triple quotes like this:

payload = """
 Long payload
 Large object goes here...
 More data.
"""

32 | P a g e

STOP - ONLY CONTINUE TO THE NEXT PAGE FOR THE SOLUTION

33 | P a g e

Challenge	1:	Solution	

The real challenge here is coming up with the payload object. Again, this is easily seen by first querying
GigabitEthernet2, understanding the format of the data returned, and the pushing the same data back to the
device (only the key/value pairs you want to configure).

If you copied over a key called name, you should have seen a descriptive error message basically saying the 2 in
GigabitEthernet=2 in the URL and the name key could only exist once, thus, we removed it from
the JSON body. You could have also removed it from the URL as you did with Postman.

Solution Script:

import requests
from requests.auth import HTTPBasicAuth

Disable SSL Verification Warning because of Private SSL Certificate
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

AUTH = HTTPBasicAuth('cisco', 'cisco')
MEDIA_TYPE = 'application/yang-data+json'
HEADERS = { 'Accept': MEDIA_TYPE, 'Content-Type': MEDIA_TYPE }

url = "https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface/GigabitEthernet=2"
payload = """
{
 "Cisco-IOS-XE-native:GigabitEthernet": {
 "ip": {
 "address": {
 "primary": {
 "address": "172.16.31.202",
 "mask": "255.255.255.0"
 }
 }
 }
 }
}
"""
print("Challenge 1:")
response = requests.patch(url, headers=HEADERS, auth=AUTH, data=payload, verify=False)
print(response.status_code)

Add in a GET request if you'd like too.

Note: Solution script located in ~/Desktop/Solutions/challenge_1.py

34 | P a g e

Challenge 2: Create a Loopback Interface

Create a new loopback interface called Loopback100 that has the following configuration:

IP Address: 10.8.1.6

Mask: 255.255.255.255

Note: use Postman as needed to explore GET requests to understand the structure
needed to send to the device!

35 | P a g e

STOP - ONLY CONTINUE TO THE NEXT PAGE FOR THE SOLUTION

 	

36 | P a g e

Challenge	2:	Solution	
	
Solution Script:

import requests
from requests.auth import HTTPBasicAuth

Disable SSL Verification Warning because of Private SSL Certificate
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

AUTH = HTTPBasicAuth('cisco', 'cisco')
MEDIA_TYPE = 'application/yang-data+json'
HEADERS = { 'Accept': MEDIA_TYPE, 'Content-Type': MEDIA_TYPE }

url = "https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface"

this also works if you remove "name" key from JSON payload:
https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface/Loopback/100

payload = """
 {
 "Cisco-IOS-XE-native:Loopback": {
 "name": "100",
 "ip": {
 "address": {
 "primary": {
 "address": "10.8.1.6",
 "mask": "255.255.255.255"
 }
 }
 }
 }
 }
"""

print("Challenge 2:")
response = requests.post(url, headers=HEADERS, auth=AUTH, data=payload, verify=False)
print(response.status_code)
if response.status_code >= 400:
 print("Remember, you can only POST once (on creation)!")

url = "https://csr1kv/restconf/data/Cisco-IOS-XE-native:native/interface/Loopback=100"
response = requests.get(url, headers=HEADERS, auth=AUTH, verify=False)
print(response.text)
print("Is there a new Loopback with the IP address 10.8.1.6, because it should be.")

Note: Solution script located in ~/Desktop/Solutions/challenge_2.py

37 | P a g e

Lab 3: Automating IOS-XE with NETCONF using
Python ncclient

In this lab, you will use a Python library called ncclient (NETCONF Client) to automate collecting data as well as
configuring IOS-XE using the NETCONF API.

Task	1:	Getting	Familiar	with	Python	ncclient	
	
In the previous labs, you learned how to use Postman and Python requests to make HTTP-Based API calls
using JSON payloads. You'll now see how that maps to using NETCONF while getting more familiar with how
JSON data converts well to XML data of the same data models on IOS-XE.

Note: you could have also used XML encoding in Postman and requests too by
changing values of HTTP headers.

In this first task, you'll prepare the framework needed to run scripts using the Python ncclient library - this task is similar
to the first one you did with requests too.

Step 1

Create a script called cl-netconf.py and open it in a text editor such as nano just like you did in the last lab.

Step 2

At the top of the file, import the required Python objects that are required to work with ncclient and XML more
generally while in Python:

from lxml import etree
from ncclient import manager

We are going to use the etree function within lxml to help us parse XML and pretty print the response from
the Cisco IOS-XE router.

For ncclient, we are specifically using the manager object that handles all of the session connects and
disconnects. Remember, NETCONF is running over SSH so it is a connection-oriented
protocol. manager handles this connection setup as well as the sending of messages back and forth using
proper NETCONF operations.

38 | P a g e

Step 3

Just below the import statements, create two functions as shown below:

def get_request(xmlstring):
 print("XML FILTER:")
 print(xmlstring)
 print("-" * 80)
 with manager.connect(host='csr1kv', port=830,
 username='cisco', password='cisco',
 hostkey_verify=False, device_params={},
 allow_agent=False, look_for_keys=False) as device:

 netconf_get_reply = device.get(('subtree', xmlstring))

 print("NETCONF RESPONSE:")
 print(etree.tostring(netconf_get_reply.data_ele, pretty_print=True).decode('utf-8'))
 print("=" * 80)
 print("=" * 80)
 print("=" * 80)

def edit_request(xmlstring):
 print("XML CONFIG STRING:")
 print(xmlstring)
 print("-" * 80)

 with manager.connect(host='csr1kv', port=830,
 username='cisco', password='cisco',
 hostkey_verify=False, device_params={},
 allow_agent=False, look_for_keys=False) as device:

 nc_reply = device.edit_config(target='running', config=xmlstring)

 print("NETCONF RESPONSE:")
 print(nc_reply)
 print("=" * 80)
 print("=" * 80)
 print("=" * 80)

Note: for convenience and to reduce typos the previous text can be copied from
~/Desktop/CopyPaste/Lab3-Task1-Step3.txt

39 | P a g e

These two functions are going to be responsible for executing the NETCONF requests to the Cisco CSR 1000V.
The first function called get_request is responsible for issuing NETCONF GET operations and the second
called edit_request is responsible for issuing NETCONF EDIT operations. EDIT operations are used make
configuration changes while GET operations are used to retrieve data.

There are several print statements in each function, but only a few key statements that map back to the imports
we made using lxml and ncclient.

We're using what's called a context manager with the with statement. This streamlines the opening and closing
of sessions for us. The variable device represents a device object and whenever you are indented under
the with statement, the connection is active to the network device. As soon as you are un-indented (back at
the left most margin) the connection is automatically closed.

Take note of manager.connect(...) statement. We're passing in several arguments namely hostname,
credentials, and other parameters relevant for SSH because NETCONF is using SSH as transport. NETCONF also
uses port 830 by default.

The next statement to consider is the following:

netconf_get_reply = device.get(('subtree', xmlstring))

This is the statement that actually goes to the devices and issues NETCONF <get> operations.
Remember manager.connect(...) establishes the connection-- it is then with
the device.get() statement that an actual request for data takes place.

There are two main types of filters with NETCONF; we're going to use the subtree filter. This requires
an XML object or string that acts as a filter to tell the target device, what to respond back with. Within the
function, our filter is called xmlstring.

The next statement in the get_request function is responsible for pretty printing the output as
an XML string. data_ele is an XML Python object that is returned from ncclient. We simply take that and
convert it to a string, then pretty print it and finally decode the binary string to a UTF-8 string for display.

print(etree.tostring(netconf_get_reply.data_ele, pretty_print=True).decode('utf-8'))

40 | P a g e

The last major statement to understand is:

nc_reply = device.edit_config(target='running', config=xmlstring)

This statement sends configuration objects to the network device. You need to pass in two parameters when
using the edit_config method within the device object. The first is target. Recall that NETCONF supports
three data stores such as running, startup, and candidate. We'll be making our changes directly to the running
configuration. The second parameter is called config, this must be an XML string or object that represents the
changes you want to make.

That's enough background for now. It's time to get started.

41 | P a g e

Task	2:	Retrieving	the	Running	Configuration	

In this task, we're going to start with the same API call we started with in Postman and when using Python
requests. This is the call retrieve the running configuration.

Step 1

Create a variable called xml_filter and assign it the value as denoted below. This is equivalent to
doing /restconf/api/running/native in the URL when working with RESTCONF.

After creating the variable, send it to the get_request function. Use print statements to identify the example
running as it will help troubleshoot if needed since you will be adding quite a few more examples to this script.

xml_filter = """
 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">
 </native>
"""

print("NETCONF EXAMPLE 1: ")
get_request(xml_filter)
print("*" * 80)
print("\n")

Step 2

Save the script and execute the script.

cisco@student-workstation:~$ python cl-netconf.py

<output-omitted>

42 | P a g e

Task	3	-	Retrieving	Interfaces	
	
In this task, we'll issue a request to obtain the configurations for all interfaces as well as for a single interface.

Step 1

Open the script again in the editor.

Create a variable called xml_filter and assign it the value as dented below. This is equivalent to
doing /restconf/data/Cisco-IOS-XE-native:native in the URL when working with RESTCONF.

After creating the variable, send it to the get_request function. Use print statements to identify the example
running as it'll help troubleshoot if needed since you'll be adding quite a few more examples to this script.

Note: The only thing changing in these GET requests is the actual xml_filter.

xml_filter = """
 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">
 <interface>
 </interface>
 </native>
"""

print("NETCONF EXAMPLE 2: ")
get_request(xml_filter)
print("*" * 80)
print("\n")

Step 2

Save the script and execute the script.

cisco@student-workstation:~$ python cl-netconf.py

<output-omitted>

 	

43 | P a g e

Step 3

Add another filter to just retrieve the configuration for GigabitEthernet2.

xml_filter = """
 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">
 <interface>
 <GigabitEthernet>
 <name>2</name>
 </GigabitEthernet>
 </interface>
 </native>
"""

print("NETCONF EXAMPLE 3: ")
get_request(xml_filter)
print("*" * 80)
print("\n")

Step 4

Save the script and execute the script.

cisco@student-workstation:~$ python cl-netconf.py

<output-omitted>

44 | P a g e

Task	4	-	Configuring	an	Interface	(Default	operation	is	merge)	

Step 1

Open the script back up and add a new task that will update the configuration for GigabitEthernet2.

Remember RESTCONF PATCH API calls update the configuration you're sending to the device. That is the default
behaviour of NETCONF, but in NETCONF that is called an operation and more specifically the default
is operation="merge".

In order to create a configuration string, create a new variable:

nc_config = """
 <config>
 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">
 <interface>
 <GigabitEthernet>
 <name>2</name>
 <ip>
 <address>
 <primary>
 <address>172.16.31.202</address>
 <mask>255.255.255.0</mask>
 </primary>
 <secondary>
 <address>10.5.1.9</address>
 <mask>255.255.255.0</mask>
 <secondary/>
 </secondary>
 <secondary>
 <address>10.55.1.9</address>
 <mask>255.255.255.0</mask>
 <secondary/>
 </secondary>
 </address>
 </ip>
 </GigabitEthernet>
 </interface>
 </native>
 </config>
"""

Note: for convenience and to reduce typos the previous text can be copied from
~/Desktop/CopyPaste/Lab3-Task4-Step1.txt

This represents what we want to send to the device.

45 | P a g e

Step 2

Add a basic print statement to state Example 4 and then call the edit_request() function. Please note that
the variable name nc_config is being used for configuration strings instead of xml_filter.

print("NETCONF EXAMPLE 4: ")
edit_request(nc_config)
print("*" * 80)
print("\n")

Step 3

Save the script and execute the script.

cisco@student-workstation:~$ python cl-netconf.py

<output-omitted>

Step 4

Re-issue a GET request to ensure the configuration was successful.

xml_filter = """
 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">
 <interface>
 <GigabitEthernet>
 <name>2</name>
 </GigabitEthernet>
 </interface>
 </native>
"""

print("NETCONF EXAMPLE 5: ")
get_request(xml_filter)
print("*" * 80)
print("\n")

Step 5

Save the script and execute the script.

cisco@student-workstation:~$ python cl-netconf.py

<output-omitted>

46 | P a g e

Task	5	-	Configuring	an	Interface	using	Replace	Operation	

Step 1

Open the script back up and add a new task that will update the configuration for GigabitEthernet2. This time
we are going to use a NETCONF replace operation. This is analogous to a PUT in RESTCONF.

We are going to replace the full configuration on the interface automatically removing secondary addresses by
only pushing a primary address.

In order to create a configuration string, create a new variable:

nc_config = """
 <config>
 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">
 <interface>
 <GigabitEthernet>
 <name>2</name>
 <ip operation="replace">
 <address>
 <primary>
 <address>172.16.33.99</address>
 <mask>255.255.255.0</mask>
 </primary>
 </address>
 </ip>
 </GigabitEthernet>
 </interface>
 </native>
 </config>
"""

Note: for convenience and to reduce typos the previous text can be copied from
~/Desktop/CopyPaste/Lab3-Task5-Step1.txt

Pay special attention to this line:

<ip operation="replace">

This is how you change the behaviour from the default of merge to replace.

47 | P a g e

Step 2

Make the request to the device:

print("NETCONF EXAMPLE 6: ")
edit_request(nc_config)
print("*" * 80)
print("\n")

Save and Execute the script.

cisco@student-workstation:~$ python cl-netconf.py

<output-omitted>

Step 3

Issue a request to validate the changes:

xml_filter = """
 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">
 <interface>
 <GigabitEthernet>
 <name>2</name>
 </GigabitEthernet>
 </interface>
 </native>
"""

print("NETCONF EXAMPLE 7: ")
get_request(xml_filter)
print("*" * 80)
print("\n")

Step 4

Save the script and execute the script.

cisco@student-workstation:~$ python cl-netconf.py

<output-omitted>

48 | P a g e

Task	6	-	Retrieving	all	dynamic	routing	configuration	
	
By now, you should be able use Postman, understand the hierarchy in JSON and see how that maps to XML.
Remember, you can also use Postman and change the Headers to use XML instead of JSON to see how to model
for NETCONF too.

Step 1

Create a filter string that queries the device for its "router" configuration. The response will contain the
configuration for BGP and OSPF.

xml_filter = """
 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">
 <router>
 </router>
 </native>
"""

print("NETCONF EXAMPLE 8: ")
get_request(xml_filter)
print("*" * 80)
print("\n")

Step 2

Save the script and execute the script.

cisco@student-workstation:~$ python cl-netconf.py

<output-omitted>

49 | P a g e

Challenge 3: Replace the Complete routing
configuration

The current OSPF configuration is:

Process: 100

Router ID: 1.1.1.1

Configured Network: 10.0.0.100 0.0.0.0 in area 0

The current BGP configuration is:

ASN: 65512

Router ID: 1.1.1.2

BGP Log Changes is enabled

Network Advertised: 10.0.0.0

Make one API call to ensure the final routing configuration is the following:

The final OSPF configuration is:

Process: 200

Router ID: 200.1.1.1

Configured Network: 100.0.0.100 0.0.0.0 in area 0

50 | P a g e

STOP - ONLY CONTINUE TO THE NEXT PAGE FOR THE SOLUTION

51 | P a g e

Challenge	3:	Solution	
	
Solution Script:

from lxml import etree
from ncclient import manager

def get_request(xmlstring):
 print("XML FILTER:")
 print(xmlstring)
 print("-" * 80)
 with manager.connect(host='csr1kv', port=830,
 username='cisco', password='cisco',
 hostkey_verify=False, device_params={},
 allow_agent=False, look_for_keys=False) as device:

 netconf_get_reply = device.get(('subtree', xmlstring))

 print("NETCONF RESPONSE:")
 print(etree.tostring(netconf_get_reply.data_ele, pretty_print=True).decode('utf-8'))
 print("=" * 80)
 print("=" * 80)
 print("=" * 80)

def edit_request(xmlstring):
 print("XML CONFIG STRING:")
 print(xmlstring)
 print("-" * 80)

 with manager.connect(host='csr1kv', port=830,
 username='cisco', password='cisco',
 hostkey_verify=False, device_params={},
 allow_agent=False, look_for_keys=False) as device:

 nc_reply = device.edit_config(target='running', config=xmlstring)

 print("NETCONF RESPONSE:")
 print(nc_reply)
 print("=" * 80)
 print("=" * 80)
 print("=" * 80)

nc_config = """
 <config>
 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">
 <router operation="replace">
 <ospf xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-ospf">
 <id>200</id>
 <router-id>200.1.1.1</router-id>
 <network >
 <ip>100.0.0.100</ip>
 <mask>0.0.0.0</mask>
 <area>0</area>
 </network>
 </ospf>
 </router>

52 | P a g e

 </native>
 </config>
"""

print "ISSUING CHALLENGE REQUEST"
edit_request(nc_config)

xml_filter = """
 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">
 <router>
 </router>
 </native>
"""

print "ISSUING CHALLENGE VALIDATION"
get_request(xml_filter)

Take note of the most important line here:

<router operation="replace">

If you do not have the operation as replace, you would have simply added another OSPF process to the router!

Note: Solution script located in ~/Desktop/Solutions/challenge_3.py

